
Programming for MSc Part I Part 6: The Preprocessor and Macros

(a) The Preprocessor

The ‘#include’ Statement

• The #include statement includes another file into the current

source

• This is usually being used for header files

• Where the preprocessor looks for it depends on the quotes

• System headers: #include <stdio.h>

−→ Search system directories

• Own headers: #include "myheader.h"

−→ Search the current directory

• But how to include a header which is neither in a system nor

the current directory?

• The “-I” switch tells the compiler to search additional

directories for (system and own) headers

Example:

% cat module.c

#include <myheader.h>

int main (void) { return 0; }

% gcc -I/home/herbert/include -c module.c

Herbert Martin Dietze <herbert@the-little-red-haired-girl.org> 73

https://www.pdfzorro.com

Programming for MSc Part I Part 6: The Preprocessor and Macros — The Preprocessor

The ‘#define’ Statement

• The #define statement allows to define macros

• Example: A name for a number: #define MAXLEN 256

• After this statement the preprocessor will textually replace all

occurrances of MAXLEN by 256

• By convention macros are all-uppercase

Example:

#include <stdio.h>

#include <string.h>

#define MAXLEN 256

void read_line (char *buf)

{

int s;

fgets (buf, MAXLEN, stdin);

s = strlen (buf);

buf[s-1] = (buf[s-1] == ’\n’? ’\0’: buf[s-1]);

}

int main (void)

{

char inbuf[MAXLEN];

read_line (inbuf);

return 0;

}

Herbert Martin Dietze <herbert@the-little-red-haired-girl.org> 74

Programming for MSc Part I Part 6: The Preprocessor and Macros — The Preprocessor

‘#define’ vs. ‘typedef’

• Some people use #define like this: #define INT int

−→ So ‘INT x, y;’ expands to ‘int x, y;’

• That’s fine, but what about this: #define PINT int*

−→ Here ‘PINT x, y;’ expands to ‘int* x, y;’ !!!

• Better solution: typedef int* pint;

• ‘#define’ is no replacement for ‘typedef’ !

Conditional Statements

• We can use the preprocessor to control what the compiler sees

• Therefore we use these: #if, #elif, #else and #endif

• The syntax is different from normal C-code

• The defined keyword allows to test for existing macros

Example:

#if defined(DEBUG)

printf ("The value of c is: %c\n", c);

#endif

We can use the compiler to manually define DEBUG instead of

doing it in our source code:

% gcc -DDEBUG -c module.c

Herbert Martin Dietze <herbert@the-little-red-haired-girl.org> 75

Programming for MSc Part I Part 6: The Preprocessor and Macros — The Preprocessor

Portability Issues

• Macros are useful when writing code for different platforms

• Type definitions and path delimiters may be different

• Critical definitions should be put into a single header

• Errors can be handled with the #error statement

Example:

/* portability header, compile with: *\

* -DWIN32, -DMSDOS, -DLINUX or -DSUNOS */

#if defined(WIN32) || defined(MSDOS)

#define PATHSEP ’\\’

#else

#define PATHSEP ’/’

#endif

#if defined(WIN32) || defined(LINUX)

typedef int int32;

#elif defined (SUNOS)

typedef short int32;

#elif defined (MSDOS)

typedef long int32;

#else

#error "Unsupported operating system!"

#endif

Herbert Martin Dietze <herbert@the-little-red-haired-girl.org> 76

Programming for MSc Part I Part 6: The Preprocessor and Macros

(b) Macros

Function-like Macros

• Macros can look like functions: #define INT(a) (int)(a)

• Difference to functions: the code gets copied into the source

instead of entering a function

• Advantage: may be faster than real functions

• Disadvantage: lets the code grow, also side effects

Macro Pitfalls

• Bear in mind that macros do just textual substitution

• This can lead to ugly bugs.

• Example:

– #define POW2(a) (a*a)

– Good: POW2(2) −→ (2*2)

– Bad: POW2(1+1) −→ (1+1*1+1)

– Solution: #define POW2(a) ((a)*(a))

• Debugging macros: Run the preprocessor on the source and

look at the result:

gcc -E source.c

Herbert Martin Dietze <herbert@the-little-red-haired-girl.org> 77

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

